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On two-dimensional inertial flow in a rotating 
stratified fluid 
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(Received 7 June 1960) 

An inviscid fluid is bounded above by a horizontal plane and below by IAte- 
amplitude ridges. The fluid is rotating and stratified. A uniform transport is 
forced across the ridges at small dynamical Rossby number, although the 
boundary conditions are such that motion cannot remain geostrophic. The most 
significant parameter is found to be a thermal Rossby number based upon the 
vertical density difference and both vertical and horizontal length scales, but 
independent of the transport. Conditions determining whether or not effects 
of the bottom topography will penetrate vertically throughout the fluid are 
discussed. Some numbers characteristic of flow in the deep ocean are presented. 

1. Introduction 
The constraint imposed upon the motion of a fluid relative to a system of 

rotating co-ordinates is such aB to inhibit variations of velocity in the direction 
of the rotation vector. Let this be the vertical direction. Then the slow, steady 
motion of an inviscid fluid consists of a geostrophic balance between the hori- 
zontal pressure gradient and Coriolis accelerations, while the vertical pressure 
gradient remains in hydrostatic equilibrium. If the fluid is of homogeneous 
density, vertical variation of the velocity is completely prohibited; if inhomo- 
geneous, the vector product of the rotation and the vertical gradient of the hori- 
zontal velocity must equal the horizontal gradient of the differential gravitational 
force. The field of motion thus restricted can satisfy only very special boundary 
conditions. In  particular, it may not be consistent with the physical require- 
ment of zero normal velocity upon an arbitrary rigid surface. In  such a case, if 
the motion is to remain steady, the velocity or velocity gradient must become 
large, at least somewhere in the flow. Thus a boundary condition inconsistent 
with the strongly rotationally constrained motion is in the nature of a singular 
perturbation on the flow. As such, boundary effects may be confined, and thus 
only of local interest, or they may be of importance everywhere throughout the 
fluid. 

The essential features of the mean flow in the deep sea have been discussed in 
terms of a theoretical model which is geostrophic and hydrostatic, and which 
indicates that the horizontal and vertical velocities are of the order of and 
10-5 cm see-1, respectively (Robinson & Stommel 1959). The vertical velocity, 
although extremely small, is considered to control the mean flow below the main 
thermocline (Stommel & Arons 1960). It is thus of importance to consider other 
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mechanisms, not included in the simple theoretical model, capable of producing 
vertical velocity in the deep sea, and to inquire into their effect upon the mean 
flow. It is particularly relevant to do so now that direct velocity measurements 
at great depths have become possible by means of a neutrally buoyant float which 
may be tracked audibly for many months (Swallow 1957). The simple mechanism 
considered here is that of two-dimensional bottom topography. 

We consider the motion of a fluid, which is bounded above by a horizontal 
plane and below by very long ridges, past which a uniform transport is forced 
at small Rossby number. Since the fluid is inviscid, the upper boundary could 
equally well be a free surface with very small gradients. First, we consider the 
topography to be neither steep nor high, resulting in flows of a type first discussed 
by Queney for application to the atmosphere (see, for example, Corby 1954), our 
results differing because of the boundary condition associated with finite rather 
than infinite vertical extent. The results of the linearized analysis are then used 
to infer an appropriate finite-amplitude model. The basic difference between the 
problem considered here and that of atmospheric lee waves is that rotational 
effects are here considered dominant rather than negligible. This is because the 
relatively weak oceanic flows correspond to a much smaller Rossby number for 
a given topographic scale. The inviscid results are of some interest for the general 
theory of rotating fluids, as departures from geostrophy dominated by frictional 
processes have been more intensively studied. 

2. Formulation 
Consider the steady motion of a fluid relative to a rotating co-ordinate frame 

in which the rotation vector G?, is anti-parallel to gravity. By assumption, all 
processes which diffuse momentum and heat are to have negligible effect on the 
features of the flow to be considered, i.e. if the flow is turbulent, the mean fields 
are assumed to be essentially independent of turbulent transfer. The equation 
of state of the fluid is taken to be a linear dependence of density on temperature 
only; furthermore, the thermal expansion coefficient a: is taken to be identically 
zero except when coupled with the gravitational acceleration g. Consistently, 
the ratio of centrifugal to gravitational accelerations is assumed vanishingly 
small. In  summary, we consider, under the Boussinesq approximation, an ideal 
fluid which is subject to Coriolis accelerations. 

The equations of conservation of momentum, mass and heat take the form 

v’.V’v’+2SZkxv’-~gT‘k+po1Vp’ = 0, (2.1) 

V’.V’ = 0, (2.2) 

(2.3) V’ . V’T’ = 0, 

where (u’, w‘, w’)  = v‘ are the velocity components in the ( X I ,  y’, 2’) directions, 
T’ is the temperature, p’ is the pressure minus the hydrostatic pressure due to 
the mean density po, and k is a unit vector in the vertical 2’-direction. 

The fluid is taken to be of finite vertical extent, but unbounded horizontally. 
The upper rigid surface is taken to be the horizontal plane 2; = h, a constant; 
the lower rigid surface is taken to be a function of one horizontal co-ordinate, 
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z; = B(y’). For convenience, this surface is placed so that the horizontally 
averaged value of B is zero. The corresponding kinematic boundary conditions 
are 

(2.4) w’(x’, y’, h) = 0, 

The influence of these conditions on the flow is to  be the primary object of study. 
Fluid motion is to be maintained by an external pressure gradient which forces 

a net transport in the y’-direction which is everywhere uniform and equal to 
&h. Because of the rotation, the horizontal pressure gradient which drives the 
motion must be in the x’-direction, i.e. perpendicular to the direction of the 
transport. We shall consider, however, only two-dimensional responses to the 
driving force, fields of velocity and temperature which are uniform along the 
ridges. Formally, let 

(2.6) P’ = Po 2Qv,[Z’ + k-P(Y, 41, 
v‘ = v,v(y’, z’), 

T’ = To. T(y’, z‘),  

where k is the wave-number, or inverse of the characteristic scale, of the bottom 
surface, and To is the total temperature difference between the upper and lower 
surfaces. The fluid is taken to be stably stratified. Correspondingly we require 
the non-dimensional temperature T to be & + on the top and bottom surfaces, 
respectively. If dB/dy’ = 0, there would be a geostrophic flow, v = 1, u = w = 0, 
independent of the thermal structure. We are, therefore, considering the two- 
dimensional modification due to bottom topography of an otherwise barotropic 
flow (for p ,  T ) .  However, since dB/dt’ 9 0, the actual flow will be baroclinic. 

Introducing the non-dimensional independent variables y = ky’, z = h-lz’, 
and isolating the functional form of the lower boundary from its amplitude by 
setting B(y’)  = bob(y),  where b has unit amplitude, we substitute (2.6-8) into 
the equations and boundary condition (2.5). The equations, which now expose 
the relevant non-dimensional parameters, become 

s[vu, + hwu,] - v + 1 = 0, 

E[VVy + hwv,] + u +p, = 0, 

@[A-’vw, + WW,] - 7T + EP, = 0, 

v, + hw, = 0, 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

vT,+AwT, = 0; (2.13) 
and the boundary condition becomes 

(2.14) 

Here, we have defined 

E E &k(2Q)-l 

7 = agT0hk2( 2Q)-2 

an inertial parameter (dynamical Rossby number), 

a rotational-stratification parameter (thermal 
Rossby number), 

21-2 



324 A .  R. Robinson 

and the geometric parameters 

h 3 (kh)-l 

/3 = b,h-l 

the horizontal-to-vertical scale ratio, 

the topographic height, 

6 = b,k the topographic steepness. 

Of the last two, only one is independent, but it is useful to define them both. 
The apparent direct measure of all non-linear effects is the dynamical Rossby 

number E ,  as b(y) appearing in (2.14) is a given function. However, even if 8 is 
small, an ordinary perturbation expansion cannot be made about the non-linear 
terms, for, as can be seen from (2.9) and (2.12), all vertical variation in v and w 
is prohibited in the geostropic first approximation. Thus a singular perturbation 
expansion is necessary; to overcome this constraint, large velocities or velocity 
gradients must occur somewhere or everywhere in the flow. 

The problem can, however, be consistently linearized with respect to the 
topographic steepness parameter S, for as the gradient of the bounding surface 
vanishes no vertical variation in the flow is necessary. In order to gain insight 
into the role of the various parameters, we shall first treat this linearized problem. 
This will be of particular value because the parameters are numerous, and the 
uniform validity of an approximation in one must be strictly limited in terms 
of the others. The information obtained from the linearized problem will then 
be used to develop a useful finite-amplitude approximation. 

3. The linearized problem 

an ordinary perturbation expansion of the form 
With the assumption that the topographic gradients are not steep, 6 < 1, 

can be made. Note that the basic temperature field is taken to have a constant 
vertical gradient, although any function of z alone is consistent with the expan- 
sions. The contributions of order 6 to equations (2.9-13), the equations for the 
first-order fields, are 

(3.2) €UIY - Vl = 0, 

~ v l y + ~ l + l ) l y  = 0, 

V l Y  + hw, = 0, 

E~A-~W,, - TT, + €pis = 0, 

Tly +Awl = 0. 

Cross-differentiation yields the equation for a single function, for example, 
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The first-order statement of the kinematic boundary condition (2.14) reduces to 
a condition on the vertical velocity alone 

db 
WAY, Pb(Yl)) = - * 

dY 
(3.8) 

The problem becomes particularly simple if the further and independent 
assumption is made that the topographic height is small, 16 < 1. This is equi- 
valent to assuming that A < 6-I. Now a power series expansion of (3.8) may be 
made about z = 0, and, if only the first term is retained, the condition becomes 
w,(y, 0) = db/dy. Simple separated solutions of (3.8) are now possible. Further- 
more, we shall be concerned only with the particular solution of (3.9), and not 
with the freedom associated with the high y-order. Since the problem has been 
linearized, the Fourier modes of the bottom surface may be considered separately. 
The equations separate with the horizontal component of the flow across the 
ridges, the pressure, and the temperature in phase, and the horizontal com- 
ponent along the ridges and the vertical component of the flow out of phase, with 
the bottom. As an example, consider b = sin y, the wavelength being already 
contained in A. The corresponding vertical solutions of (3.7) are 

cosy cos sA-l( 1 - 2) 
sin sin €A-1 

cosy sin 1 - z )  
sin €A-1 sin d-l 

sin y cos d-l( 1 - z )  
sin €A-1 

E sin y cos EA-I( 1 - z )  

A sin y sin sA-l( 1 - z )  

u1 = -7 , w l = - -  2 

w1 = , TI=-- 9 __ 

PI=  

Note that the qualitative behaviour of the solutions depends strongly on the 
relative sizes of r ,  8, A. To demonstrate this, two limiting cases are discussed 
below, both for weak basic flow, E < 1. Thus e2 will be neglected in the denominator 
of the radical in the argument of the exponential. This corresponds to neglecting 
the inertial term in (3.3). In  the first case the fluid is to be homogeneous, in the 
second, to be effectively strongly stratified. 

’ 

(3.9) 
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If the natural scale is much larger than the geometrical scale, A B 6, Iess than 
one oscillation occurs; in the limit as d-l vanishes, ul, vl, p1 are independent 
of z, while wl, TI vary linearly. The only appearance of 6 which remains is in the 
amplitudes of u1 andp,, which are O(e-lA); a large flow along the ridges overcomes 
the rotational constraint. Explicitly, retaining the first two terms in the expan- 
sion of the cosine and the sine, we find 

It should be remarked that the actual large vertically-constant velocity given by 
the first term is independent of the basic velocity, i.e. 

u1 N cos y{€-lA + €Ah-l[+ - i( 1 - 421) .  

U; N &€-'A cos y = 2Qh.-lk-' cos y. 

The fact that the flow along the ridges becomes very large suggests that major 
modification of the flow might occur if the fluid were finite instead of infinite in 
this direction; boundary conditions upon u might significantly alter the motion. 
To investigate this effect we have considered the flow in an infinite channel with 
a wavy bottom, i.e. the same problem as above but containing the fluid in 
-8  < x z %'/a? < 4. The three-dimensional operator which now replaces (3.7) 

(3.10) 

and the solution for u, after the satisfaction of all boundary conditions is, 
for E 4 1, 

where 

The solution is seen to be that of an inertial wave in the x-direction also, the effect 
of the side walls penetrating throughout the fluid, and additional resonances 
being indicated. Taking the limit of 1, as above, we find that 

the large, O(s-lA), contribution has entirely disappeared. What has happened is 
that, in the presence of plz, the fluid tends to remain geostrophic, but not hydro- 
static; large pressure gradients overcome the rotational constraint now that the 
velocity component across the direction of the transport has been restricted. 

Case I I .  E < 1, r % J(eA-1) 

The appropriate approximate form of the solutions to (3.2-6) are now 

AT* sin y cosh d( 1 - z)  
sinh r* 

- . __ A d  cosh d( 1 - z )  
u1= -cosy- 2 v1=--- 

E sinh r c  

h sin y sinh d ( 1 -  x )  - 

sinh r* 
1 T - -  .. 

cosy sinh d( 1 - z)  
sinh 7) 

9 1- 
_._ w1 = ' (3.12) 

A d  sin y oosh .a( 1 - z )  
P1 = - sjnh 7 $  . 
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The solutions are no longer inertial waves, but contain a natural length scale 
based upon the thermal Rossby number T only. The remaining role of the 
dynamic Rossby number E is to set the amplitude of u, and p,. The flow remains 
hydrostatic and departs from geostrophic only in the first equation of motion. 
The non-dimensional velocity components across the ridges and in the vertical 
are similar in T alone, i.e. independent of 6. If the natural length scale is larger 
than the geometrical scale, ~4 < 1, the first-order fields fYl smoothly the entire 
region between the upper and lower surfaces. If, however, the natural length 
scale is smaller than the geometrical, T* > 1, the first-order fields become 
essentially confined within a region above the bottom surface, the width of which 
decreases with increasing T .  Thus when T* 1, the response to the bottom topo- 
graphy is an entirely local effect, the flow field and temperature modification 
occurring in a narrow boundary layer. In  this interesting limit, the functional 
forms of the solutions (3.12) may be approximated by 

(3.13) 
sinh T&( 1 - z )  cosh T*( 1 - z)  e-riz N 

sinhT4- sinh T* 

It should be noted, however, that in this boundary layer the horizontal velocities 
become very large, increasing as T*; u, is also large as E-,, and the vertical, 
gradients are large as well. Thus severe restrictions again occur on the range of 
validity of the ordinary perturbation expansions in the topographic steepness 
and height, S and /3. 

4. The finite amplitude problem 
The mathematical model and analysis 

Of the results of the linearized analysis, those of Case I1 hold the greatest 
interest for possible oceanographic application, where the dynamical Rossby 
numbers and the vertical-to-horizontal scale ratios are usually small, and the 
pressure tends to remain essentially hydrostatic. Furthermore, even if the 
vertical temperature gradient is only one degree in a thousand meters, the 
thermal Rossby number that we have defined will be large for topographic length 
scales up to about a 100 km. Thus the final result of an inertial-thermal boundary 
layer is most pertinent, but, as mentioned above, the large velocities and velocity 
gradients that occur limit the validity of the expansions to extremely small and 
smooth topographic elements. 

To examine the limitations imposed, we consider the order of magnitude of 
terms neglected in equations (2.9-14) in arriving at the approximate solutions 
obtained by inserting (3.13) into (3.12). Note that ul, p,, are O ( ~ T * E - ~ ) ,  v, is 
O(hd) ,  w1 is O(l ) ,  T, is O(h) ,  and 8/82 is O(T*). Two types of terms have been 
neglected, second (and higher) order terms of the initial &expansion, and terms 
omitted because of subsequent assumptions made concerning E ,  T and h (or p). 
Terms of the latter type will be designated type A, and those of the former, type B. 
The order of magnitude of the first neglected terms of these two types, relative 
to the magnitude of the retained terms, are tabulated as follows for the first, 
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second, and third momentum equations, the heat equation, and the kinematic 
boundary condition, in that order. 

equation no. (2.9) (2.10) (2.11) (2.13) (2.14) 

type A none €2 h-z7-isa none 6hd 
type B SAT* S M s a  ah-'T-ta 6hd &IT* 

Recall that the conditions for validity of the solutions are roughly 6 < 1, &< 1, 
T > 1 and h < 6-1 but h > €7-2. It is seen, therefore, that, except in the kine- 
matic boundary condition (2.14), the approximations leading to the omission 
of terms of type A impose no new restrictions; they are good approximations for 
this range of parameters, even in the boundary Iayer. However, terms of type B 
in equations (2.9), (2.13), and both terms of (2.14), require that 6 A d  < 1, a 
strong restriction on the height or steepness of the bottom topography. The 
terms in (2.10) and (2.11) require nothing new. These results may be summarized 
by noting that more terms of the same type as those that have already con- 
tributed to the boundary-layer solutions become more and more important as 
the topography becomes larger or steeper, but terms which have not contributed 
(i.e. the inertial terms in the second and third momentum equations) continue 
to be negligible. 

The preceding discussion suggests the following approximate non-linear model 
as appropriate for the range of parameters under consideration. The fluid motion 
is assumed to remain geostrophic in the horizontal direction normal to the 
gradient of the bottom surface, and the pressure is assumed to remain hydro- 
static, but the full non-linear terms in the first momentum equation and the heat 
equation are to be retained, and the kinematic boundary condition is to be 
satisfied exactly. Returning to equations (2.9-13), these assumptions are forma- 
lized by assuming E < l, and expanding in this parameter after recognizing 
that the leading contributions to u and p are O(e-l), while the leading terms for 
the other fields are independent of E. Defining 

p = EU, 7 l  E €p,  (4.1) 

and introducing a stream function for v and w because of the two-dimensional 
form of (2.12) as 

substituting these expressions into (2.9, 10, 11, 13), and neglecting contributions 
0(e2) ,  we find that the approximate equations are 

$zTv - $vT, = 0. (4.6) 

Furthermore, the pressure can be easily eliminated between (4.4,5), and these 
equations replaced by the simple (thermal wind) relationship 

pz + TT@ = 0. (4.7) 
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The boundary condition (2.14) is now satisfied exactly by requiring the bottom 
surface to be a streamline; unit transport in the positive y-direction is taken as 

$(?A 1) = 0, $(Y, Pb(Y)) = - 1. (4.8) 

The problem that has been posed may be solved most simply by a tram- 
formation of independent and dependent variables, which is suggested both by 
the form of the equations and by the nature of the boundary conditions. The 
variables z, p ,  T are now considered as dependent, and $, y as independent. 
Under the condition (a$/az), 9 0, with subscripts hereafter referring to partial 
differentiation with respect to the new set of independent variables, (4.3,7,6) 
transform to 

p,+z*- 1 = 0, (4.9) 

~9 - TT+z, = 0, (4.10) 

T, = 0. (4.11) 

An additional term containing a factor T, appears in the direct transformation 
of (4.7) into (4.10), which is zero in virtue of (4.11), i.e. since the temperature is 
dependent upon the stream function only. 

Integrating (4.11) in the form T = t(+),  extracting a particular solution by 
defining c = z-$- 1, substituting into (4.9, lo), and eliminating fi by cross- 
differentiation, yields the basic equation 

C$@ + Tt'($) cyl/ = 0, (4.12) 

which must be solved together with the boundary conditions 

C(0,Y) = 0, a-  LY) = Pb(Y). (4.13) 

Cast in this form, the non-linear problem is seen to have a remarkable property, 
viz. both the bmic equation (4.12) and the boundary conditions (4.13) allow 
simple separation and solution by Fourier superposition. Thus if, 

then 

where 

and 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Arbitrarily shaped, finite-amplitude bottom topography may be analysed in 
terms of its component Fourier modes, and the flow (i.e. the position of a stream- 
line) obtained by solving a linear ordinary differential equation, which will, 
in general, have a non-constant coefficient. 

Discussion 
To illustrate the method, and to obtain qualitative features of the results, 

the single mode b = sin y will again be considered. To proceed we must, of course, 
f i s t  determine the functional relationship between the temperature and the 
stream function. In  this case we do so by requiring the temperature to reduce 
to a linear function of z alone when the topography becomes vanishingly small, 
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B --f 0. In  other words, we pose the same problem as was posed in perturbation 
form in 4 3 above, and the results must agree in the range of overlap of validity. 
This is seen to require t ( $ )  = $++. Thus t ' ($ )  = 1, and the equation corre- 
sponding to (4.16) has constant coefficients and simple exponential solutions. 
This is, of course, analytically the simplest problem of its type. In  general, the 
functional relation between T and $ must be obtained by specifying both 
quantities as functions of z at some value of y. The solutions for the case con- 
sidered are 

1.0, g - 0  

0.8 

-0.2 - 
- 0.4 - 

* 

(4.18) 

I I I I I 
Y = o  4n n +l 2n 

FIGURE 1. Streamlines for ,8 = 4, T = 4, 6 < 1. 

The character of the solution may be seen in figure 1, where the streamlines are 
plotted for P = 12 and r = 4. There is a symmetrical (about the crest and trough) 
distortion of the streamlines by the wavy bottom, which decreases towards the 
straight upper surface streamline. 

For a fixed p, as r increases, essentially straight streamlines obtain iri a shorter 
distance above the bottom surface, i.e. the boundary layer over the crest, which 
may already be seen forming in figure 1, becomes narrower, and the flow over the 
crest becomes more rapid; correspondingly there is less distortion, and therefore 
less transport, in the trough. In  this range, therefore, topographic effects in- 
fluence the flow only locally. However, the behaviour for large T ultimately 
limits the applicability of the theory, i.e. a relatively high crest blocks the flow 
when the fluid is effectively strongly stratified. The mathematical expression of 
this limitation is that z ceases to be a monotonic function of $, and thus the 
solution ceases to have physical meaning. From (4.18) 
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the second term is largest at y = &r (the crest), and the condition for validity is 
seen to be 

,874 c tnhd  < 1; or, approximately p -= 7-4 for r 9 1. (4.19) 

To overcome this constraint, additional inertial accelerations, from the 
second or third momentum equations, must become important, at least in a 
limited region near the top of the crest. Solutions (4.18) may possibly remain 
valid away from y = &r, and an inertial boundary layer, dependent upon both 
e and r ,  govern the flow in a limited region near the top of the crest. Further 
consideration suggests, however, that solutions (4.18) may not be physically 
realized as condition (4.19) is approached, because the flow may become therm- 
ally unstable as the isotherms become steeply tilted. The preferred flow would 
conceivably consist of all the transport occurring in a warmer upper layer. 
Perhaps the greatest usefulness of condition (4.19) is as a criterion for the design 
of a critical experiment, increasing r towards ,8-2 for various e. Since r depends 
upon Q, and e upon Q and V,, the variations could both be made mechanically. 

Returning to a consideration of (4.18) and figure 1, for fixed p and decreasing 
r ,  the topographic effects are seen to influence the flow everywhere. The solu- 
tions take particularly simple form when r is much less than one, but still large 
enough for the fluid to remain hydrostatic, Expanding the functional form of the 
solution in this range and dropping terms O(r) ,  we find 

z N 1 + (1 -Psiny) @, ,u = eu N pcosy. (4.20) 

Thus the remaining role of r is merely to determine the vertical distribution of 
pressure; buoyancy effects no longer influence the fluid motion. A large, O(e-l), 
vertically constant cross-flow again overcomes the rotational constraint. If the 
basic vertical thermal gradient, Toh-l, and the rotation, SZ, are fixed, the limit 
of small T is associated with small wavelengths. To retain geophysical pertinence 
in the results as the horizontal topographic scale becomes large, account must be 
made for the variation of the effective rotation with latitude if y is a north-south 
co-ordinate. A variable Coriolis parameter may be introduced by replacing the 
constant Q in (2.1) by Q( 1 + wy), where o measures the variation of the Coriolis 
effects with respect to the horizontal scale of the topographic elements. The 
solutions replacing (4.20), in terms of the general lower surface, are 

z = l+(l-Pb(?l))@, Ilc =sLBb(Y)-oy+wp~b(Y)ld~. (4.21) 

Note that there is no change in the stream function forv, w, and that the variation 
of the Coriolis parameter and general bottom shape are symmetrical effects in 
their influence upon u. This is understandable, in that the variation of the 
Coriolis parameter is an expression of the curvature of the earth relative to the 
effective rotation vector (the component parallel to gravity). 

If T is not small, but w effects are still important, the problem is not intrinsic- 
ally more difficult, although i t  becomes more complicated analytically. 6 must 
now be written as a sum of terms of the form 6, = g,(y)jn($), where f, still 
satisfies (4.16), and gn satisfies a Bessel equation, gi+n2(1 +wy)g, = 0, the 
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solutions of which must be used to expand b(y). The geophysical interest in this 
range is slight, as the conditions imply an excessively strong stratification. 

To summarize the applicability of the qualitative results to the flow in the 
deep sea, numerical values of the parameters that are characteristic of oceanic 
conditions below the main thermocline are presented. The numerical values, 
computed for To = 5 "C, a = 2 x ("C)-l, 2Q = 10-4(sec)-1, h = 5 x 105cm, 
are given in the following table. 

V,, (cm sec-I) k (cm-l) € r 7-* 

1 2 x 10-7 2 x 10-3 2 7 x 10-1 
1 2 x 10-8 2 x 10-4 2 x 10-2 7 

10-2 2 x 10-7 2 x 10-5 2 7 x 10-1 
10-9 2 x 10-8 2 x 10-8 2 x 10-2 7 

The theory becomes useful when the horizontal scale is greater than 30 km, 
allowing a topographic height of 0.2. Features up to a scale of 100 km will not 
influence the basic flow significantly, but the effect of (sufficiently high) larger- 
scale topography will penetrate throughout the flow. It must be borne in mind 
that the stringent conditions of two-dimensionality and negligible influence 
of turbulent viscosity and conductivity must be met to make these results at 
all relevant. 
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